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CHAPTER I

INTRODUCTION

The dynamics of nonrigid satellites has been the subject of interest
for some time. There are numerous references in the literature which
refer to problems that have been solved either by theoretical analysis
or by emperical methods. For example, many satellites are now
stabilized by using the gradient of the Earth's gravitational field.

The gravitational force which the Earth exerts on a second body
decreases as the inverse of the square of the distance between the two
mass centers. It has been shown that if a nonsymmetric satellite with
damping is placed in circular or nearly circular orbit around a much
larger body, the satellite will become stabilized about an inertia
axis which always points along the local vertical. This orientation
allows a satellite antenna to maintain, at all times, some desired
pointing position relative to the Earth.

An analysis of this problem for a dumbbell shaped satellite which
is extensible but may not deform in bending appears in an article by
Paull. In this case, the system always stabilizes itself about a
fixed direction relative to the Earth. This is not always desirable
as in the case of a manned space capsule spinning about its booster
vehicle at the end of a cable to provide artificial gravity for the
astronaut. Here it is desirable for the spinning to continue indefinit-

ly without the addition of thrust.



The problem of a cable connected system spinning is orbit raises
two bésic stability questions: (1) will the system continue to move
at a fairly constant spin rate in the predicted orbit and (2), will
the internal motion of the system, in this case the connecting cable,
remain bounded near some desired motion? Several papers on these two
problems have been written. All deal only with motion in the plane of
the orbit.

In connection with the first stability question, the paper by
Pittman and Hall2 claims that any such system is inherently stable
since it is moving in a conservative force field. This is true,
but they do not make statements about the limits of these bounds and,
as will be shown later, the limits may be undesirable from a practical

point of view. The study by Austin3

does not consider the gravity effects
but restricts itself to an investigation of nonlinear effects due to
rotation. His model is also the extensible dumbbell for which he
concludes that nonlinearities due to rotational effects become impor-

tant only when the spin rate is high. He does not consider the dynamics
of the connecting cable.

Thus, in answer to the first stability question, it would seem that
there is nothing to insure that the system will not leave its predicted
Keplerian orbit and approach the Earth's surface at a higher and higher
spin rate so that the total energy is conserved.

The second question, that of cable dynamics, has been studied by
several authors. The papers by Chobotovu, Penge11y5, Tai and Loh6,
and ’I'argoff7 all treat the problem of a cable connected system spinning

in orbit. Each assumes the cable to have negligible bending stiffness,

and to be of a uniform, linear elastic material. The bodies which the



cable connects are assumed to be point masses by all authors. However,
Pengelly also deals with finite rigid bodies. The paper by Targoff
carries the analysis of cable dynamics the furthest so the present
discussion will be restricted to his paper.

Targoff derives the equations of motion by summing forces on each
mass element of the system and satisfying static equilibrium with the
corresponding D'Alembert forces. An assumption of small deflections is
made from the start of the analysis. Coriolis effects are also
neglected to uncouple the equations which he derives. The first
assumption, that of small deflections, is commonly made when studying
dynamic systems, and can usually be justified if stability is demonstrated.
However, it is not clear that the second assumption, that of neglecting
the Coriolis effects, can be justified., Even in the case of slowly
spinning systems, the forces retained in the analysis also tend to
decrease with the spin rate as do the Coriolis forces. Unfortunately,
the equations detived for the spinning cable system are too complex to
lend themsélves to analytical solution if the Coriolis effects are
retained.

A survey paper by Ashley8 points out that, in general, a systematic
approach to the problem of gravity gradient excited spinning systems
needs to be considered. The authors mentioned above have, each in his
own way, attacked some aspect of the problem by various techniques.
Their methods of analysis soon reach the limit of their applicability
when applied to relatively simple systems. This is not to say that the
results obtained from these studies are not valid or useful. The results
of a simplified analytic approach are many times instructive and serve

as a starting point of a more general analysis.



The purpose of the present study is to present a more general
approaéh. The methods of analysis described here can be applied to
general cable connected structures., The method presented is specifi-
cally applied to the problem of a point mass spinning about a much
heavier body to which it is connected by a linear elastic, constant
density, constant cross sectional area cable. The system, in turn,
is in an orbit about a third body as can be seen in Figure 1. This
particular configuration is a special case of the more general model
considered by Targoff7 and othersu’5’6.

For the more general model, the center of mass is not necessarily
attached to a physical point on the system. 1In the case considered
here, the center of mass is assumed to be at the center of the heavier
of the two orbiting masses. This assumption is reasonable for a
system which has a heavy body at the center of the structure. If the
more general configuration were to be studied in the same way as that
proposed here, as a rule, two constraint equations would have to be
imposed which would specify the origin of the coordinate system of the
orbiting bodies as the center of mass of the orbiting system.

There are, in fact, two cases where it is not necessary to include
the constraint equations: (1) the case mentioned above in which the
center of mass is assumed to be at the center of the heavier body and
(2) the dumbbell case, also mentioned previéusly. In the case of the
latter, the center of mass is on a line between the two end mass points
if the connecting cable is assumed to be massless. Both cases are
considered in the work.

In the first part of this study, the equations of motion are



derived by applying Hamilton's principle to the action integral for the
cable connected system shown in Figure 1. The equations derived are
nonlinear, coupled, partial differential equations with time dependent
boundary conditions. Three special cases are shown to come from the
general equations when appropriate assumptions are imposed. The
complexity of the general nonlinear equations and the corresponding
linearized equations seems to preclude anmalytical solution unless some
rather severe assumptions are made. Thus, even though'a systematic
approach to the problem via Hamilton's principle produces the exact
equations of motion for the system, little information concerning
stability or motion can be obtained without limiting assumptions.

Because of the difficulties encountered above, it is proposed in
chapter III1 that the cable be approximated by linear elastic, massless
springs. The Lagrange equations of motion for the lumped system are
shown to be a system of nonlinear, ordinary differential equations.
Damping is included in the equations and its effects of stability
investigated. Previous authors have given only a brief and, perhaps,
oversimplified look at damping effects.

The simplest lumped mass model, the dumbbell, is then used to
examine, in more detail, the bounds on the types of motion which can
occur within the energy levels of the conservative system. The orbits
in which the dumbbell may move are shown to be essentially those in
which a point mass may move; however, a small change in orbit of the
dumbbell means a sizable change in spin rate.

The bounds are found by examining the ficticious potential function

for the dumbbell system. Results from a numerical 1ntegration of the



exact equations for the dumbbell indicate that, for most cases, it is
reasonable to assume that the center of mass of the system moves in a
Keplerian orbit. This affords one the luxury of being able to calculate
the position of the center of mass independent of the relative motion
of the system. It is shown that the motion of a dumbbell whose center
of mass moves in an undisturbed Keplerian orbit, and that of a light
mass spinning about a very heavy mass which also moves in an undisturbed
Keplerian orbit are almost identical. The latter model is henceforth
refered to as the single mass model since only the lighter mass moves
relative to the orbital point. The above result is used to justify
the original model and orbital assumption considered.

Next, the results of an analysis of gravity gradient stabilization
of the single mass model, which is equivalent to the dumbbell, are
shown to agree with the work of Paul1 and also with the conclusions
reached from examination of the ficticious potential function.

The analysis then proceeds to the case where the single mass is
spinning in orbit. The linearized equations are shown to be ferced,
ordinary differential equations with periodic coefficients. A method

9

given in the book by Cesari” allows one to study the stability of the
system of linear equations with periodic coefficients. The method,

due to Floquet, may be applied through numerical integration to. any

set of linear ordinary differential equations having periodic coeffi-
cients. The importance of this result is that any general configuration
can be systematically analysed by lumping the distributed mass of the

cables, linearizing the equations, and applying Floquet theory by

numerical integration.



The investigation then turne to the dynamics of the connecting
cable. A justification of the lumped analysis is shown by comparing
natural frequencies obtained from both a distributed mass and a lumped
mass analysis of the nonspinning cable. The effects of damping in the
lumped model are considered and shown to be ineffective in damping out
transverse motions.

A brief analysis is given to justify neglecting out-of-plane
motions of the connecting cable in any analysis of in-plane motions.

The final section gives an example of how finité bodies may be
incorporated into the lumped model to determine the modes of stability
and motion for a cable connected system where the rigid body motion
of the connected bodies may be important.

The impetus for this work arose from a NASA grant to the Radio
Astronomy Observatory of the University of Michigan to study the
feasibility of a very large cable connected orbiting and spinning
antenna for radio astronomy observation near the 1Mc. frequencies
(see reference 10 for more details of the antenna). The single mass
model considered in this study is, in fact, an approximation to a
portion of that structure. The general approach to the problem was

devised to allow analysis of the complete!structure. in orbit.



CHAPTER II

DISTRIBUTED MASS SYSTEM

The system to be considered consists of a point mass subsatellite
connected to a much heavier point mass which moves in an undisturbed
Keplerian orbit around the Earth, as shown in Figure 1. It is assumed
that the motions of the subsatellite do not disturb the heavier mass.
The assumption of a point mass subsatellite is a simplifying assumption
which can easily be dropped, if the rigid body motions are to be con-
sidered, as will be shown in chapter V. The cable is assumed to have
constant linear elastic properties, constant mass distribution and a
constant cross sectional area. These three assumptions are not necessary
for the analysis, but do simplify the work required and are reason-
able for most applicatioﬁs. The motions are restricted to the orbital
plane since all the features of the analysis can be shown for this type
of motion. A further justification of this restriction is presented in
chapter IV where the cable is free to move out of the plane. The motion
reference line shown in Figure 1 and given by the coordinate ¢ is general
and may be specified as the rigid body motion of the cable~subsatellite
system. The definition of ¢ is changed to suit the particular case
studied,

The radial and tangential deflections of the cable, v(r,t) and
u(r,t) respectively, are measured from the undeflected; rigid body refe-
rence line given by r and ¢. Hence, the system is considered to be

rotating if ¢ # O.



Using this model and the above assumptions, the exact equations of
motion are derived via Hamilton's principle. They are linearized and
solved for three special cases of constant tension: (1) nonrotating,

where ¢ = O, with no gravity gradient effects, (2) rotating, where

]

@ = constant, again with no gravity gradient effects, and (3) rotating
in the gravity gradient with é = a function of time. These three cases
are shown to agree with previous work and they also demonstrate the

assumptions which must be made to obtain solutions for the distributed

mass analysis.
We now proceed to derive the equations of motion. The radius vector

from the Earth's center to any mass point, dm, is given by
(1) t =[R cos & + (r + v)cos ® — u sin ¢j¥
+ [R sin @ + (r + v)sin @ + u cos @J]
The square of the magnitude of the velocity vector is given by
(2) |T12 =82+ R0)2+v2 + 62 4 [(r + v)2 + u21o? — 2uvp + 2u(r + v)o
+ 2 cos (9 — 6)[£; + Ré; + Ré(r + v)& - ﬁu&]
+ 2 sin (p — O)[ — ﬁ; - é(r + v)é + Ré; - Réué].
The Lagrangian consists of the following terms

Ls = Ts - VE - VG

where 'I'S g Kinetic energy of cable
VE g the elastic potential of the cable
and VG g the potential dué to the gravity'field.

The term, Ts, is given by
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L

(3) T, = 1/2fp ];[Edr = 1/2'pf';’2dr for p = const,

0 0
where f = length of unstretched cable and p = mass/unit length, The
elastic potential, VE’ is given by

4
2
Ve = 1/2L/“AE € dr

0

where € is the axial strain of the cable, A is its crossectional area .
and E is Young's modulus. This definition of strain energy assumes '
only axial strains and neglects bending strains. This assumption is
valid for a long thin cable, even when transverse deflections are
allowed, if the local radius of curvature remains large. The axial

strain is given by

Ar -0

For )2 ’
we get
\j[Ar + (v2 - vl)]2 + (u2 - u1)2 - Ar 5 5
lim e )8,\/1_+2v +v. " 4+u -1
Ar — 0 & T T T
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v
. . hd éﬂ
where v, implies S5r and u implies 3 °

For small displacements, this reduces to the familiar one-dimensional

strain ‘displacement relation
€ =v_ .
r

Finally, for VE'
/4 2

\/h[ 14+ 2v + v 2 2 -1 } dr .
0

The potential VG’ is given by

(¥)

“’lﬁ:

;

VG = - 5:72 dr where G = product of Universal
o ER gravity constant and mass of Earth.

After substitution for f; | >

(5) v, =—epf = — '

R + (r + v) + o+ 2R[(r + v)cos(p — ©) — u sin(p — ©)]

Hence, L, is expressed by equations (3), (4), and (5). The Lagrangian

for the end mass contribution, L, is found by replacing the integral of

M
pdr by M and evaluating the functions at r = f in expressions (3) and (5),

i.e.

=2
(6) TM==1/2M|r]

r=f

The action integral is defined as
t

2
(7 J(v,u) =f Ldt

Y

where L = Ls + LM'
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Expressing the varied functions as

v*(r,t)

v(r,t) + €v1(r,t)
and

*

u (r,t) = u(r,t) + eul(r,t)

we may compute the first variation of the action integral. According to

Hamilton's principle, the first variation must be stationary.

t t
p2 4 2
J =J[ fLsdrdt +f LMdt

tl 0 tl

Hence for

we get the variation (see reference 11)

aL .
t2 1 svr BLS;
(8) 8J = euf\ Jf L - - v.(r,t)drdt
s 1
v or ot
t, O
1
oL
t2 1 sur BLS;
+ € k]h L - - u. (r,t)drdt
s 1
u or ot
t, O.
1
t2 )
+ € JF 3 L .v. +L . u +'§— L v, + L u drdt
3t s, 1 S, 1 3r sv 1 su 1
t 0 T T
1
t
2 5 - T2 o
+ € L, -1, v[tdt+€f =1L . v (2,t)] dt
l > b
¢ (Mv atLMv) ¢ at(MV 1,

1 1



13

t t

2 d 23
+ef 1.M —-—LM. ul(z,t)dt +ef = I.M ul([,t) dt
¢ u Jt u A ot u
1 | 1
oL,
where Ls implies —= ., The varied functions must vanish at the end of
v ov
the time interval, hence
u, (r,t) = v (r,t) z 0.
1 t,,t 1 t,.,t
1’72 1’72

The geometric boundary conditions are v(0,t) # u(0,t) = 0. Applying

these conditions to equation (8) reduces it to

(9) 83 = €f f( -9 L s, *B%LS;J v, (r,t)drdt

r

t2 2
+ ef ( - -a-L -2 L. ) ul(r,t)drdt

t Su
t “r ot u,

For the variation to vanish, each of the first two integrals must
vanish. Thus, we obtain the equations of motion from the first two

integrals, namely
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_ 2 -9 -
(10) st or str ot Ls; °
and
JoX D
(11) L -%1. -2£1.=0.
Sy or sur ot sy

After collecting the integrals having u, and Vi respectively, we obtain

the following natural boundary conditions for the free end of the cable,

1 +1. - L. =
(12) L, Ly 3t LM 0

u u u

rfjxr =1

+ - 1 .=0.

(13) LS LM 3t LM

v g v v

rir =1

The equations and boundary conditions at this point are in terms of
the two contributions to the Lagrangian. To compute the equations in
terms of our displacement functions, u and v, the following derivatives

are calculated

(1%) L, =p {Grkv)éz + Rééfcos (p — 8) — i& sin (p — 8) + ;é }
_ Gop [(xr+v) +R cos (p—8)] 3/2
{R + (r + v) + u” + 2R[(r + v) cos (p — ©) — u sin (m - 6)]}
(15) L = o {ug’ Rép sin (o ~ 8) =~ vp — Rp cos (p - O)}

_ ¢ o [u=R sin (g~ €)] s
{R2 + (r + v)2 +u® + 2R[(r + V) cos (p —©) — u sin (p — 8)7}




15

oL

| svr 1

(16) = TSp SAE(vV 1- -
X rr

\jl + 2vr + V.

2 4 u 2
: r

)

(L+v. ) (v._+vv_+uu
r’ rr  rrr  rrr
2

3/2

+

2
(1+ av_+v " +u )

oL
8
fof o 1 == , 2
\/1 +2v +v 4u
T T T

u
(17) vy AE (u 5

u(v._+vv_+uu )
r''rr  r'rr  r rr

+
2 2y 3/2
1+ v+ v " +u )

oL_.
s o . L] . *
(18) - *-p{v+ (R +RE(p = 0)] cos (p = 6)

+[—i§(q>*’6)+1.§é+R;] sin ((p"e)—l.xq‘)'-u;}

oL .
8 - s o ' . v = .
(19) ——s =-p{u+vw+(r+v)p+[RE+R6~R(p—8)] cos (¢ )

+ [-Ré((p"' é) - .1?:] sin (p — 6)}.

The terms in equations (14) and (15) which came from the gravity
potential may be expanded in terms of the ratis of the body dimensions to
the orbital radius, This expansion converges quite rapidly since

R >>> r, v, u. Keeping up to first order terms, we get for these terms

respectively
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(20) —-ﬁ% cos (p — 8) — i% (r +v) +-3§% [(r + v) cot® (p — ©)

_u sin’Q(Q—‘e)]
2

and

2 3

(21) -8 4in (p — ©) - Go, —-3§§fﬁr + v) sin 2(p — 6}/2 - u sin® (o = ©)].
R R R

It can be noted here that if all the terms multiplied by sin (¢ — ©)

and cos (p — ©) are collected, their coefficients from equations (14) and

(15) are

(X ] .2 G LR ..\‘

(22) R — RE° + == and RO + 2RO ; -
R3 /

These two coefficients are zero if we let R and © be governed by

Keplerian equations of motion which was assumed at the beginning of the

problem,

Finally, the nonlinear, partial differential equations for plane
motion for the linear elastic subsatellite-cable system after expanding‘

the gravity potential contribution are

(23) .v.=(r+v) (;)2+—-%[1+3cos 2(@”9)]}
2R

+u{q;——3-§ sin 2((;)"9)}
. R



17

‘. AE 1
+ 2up + == <v [l—’ ]
P2 A\/1+2vr+vr2+u2

r rr r rr

2 2y 3/2
(1-!-2"11.4-1‘:r +ur)

+(1+vr)(vn_+vv + u_u )}

and

(24) u=u {c;? + -ﬁé- [1-3 cos 2(p — e)]}
2R

- (r + v) ;;—:i-gsinE(cp-e)} "'2\‘&;3

AE N 1 u (v, + vV + u b ].
o Ve |lT 2. 2" 2. 2.3/9
+u (1-!-2vr+vr +ur)

Upon identifying the coefficients as the point mass in orbit equations

of motion, the boundary conditions become

(25) v = (r +v) q.)2+—g§[1+3 cos 2 (cp-e)]}
2R

+u{q>—3'§§sin2(cp-e)}+2uq>‘ £ . . -
2R ' ,

AE{ o 1 }
-=J1- 1+v) @re«:
L \/_1 +2vr'+vr2+ur2 r
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and

(26) u=u {QSE +-5 11 -3 cos z(cp—e)]}

or3
o8 G -1 * 0
- (r + v)[m —'35 sin 2 (p— 8) | — 2w
R d
1 -
_AE. 1 - u @r"‘l
M l+2v +vo+u’| T
r r r |

The equations of motion are a function of two variables, time
and distance, They are forced through the gyroscopic and gravity
gradient terms and coupled through the gyroscopic, the elastic, and the
gravity gradient terms. The boundary conditions for the free end
exibit the same form as the equations of motion and are time dependent.
An analytic solution of this set of equations is hopeless. However,
there are certain interesting and iﬁformative special cases that may be

studied if appropriate simplifying assumptions are made.

1. Case I - Non-spinning in Free Space

If we do the following: (1) let R = ® so that the gravity effects
vanish, (2) let é = 0, which implies that the system is non-rotating and,
finally, (3) prescribe the tension by setting AEvr =VT = constant, we
have the case corresponding to that of a cable vibrating with a constant
tension between fixed walls. If the above restrictions are placed on
equation (24) and it is then linearized, we get the familiar vibrating

string equation
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. T
(@7) U= %

with boundayy conditions u(O,t) = u(f,t) = 0., The natural frequencies

are easily found to be

nx [T
wn ‘TJ% n = 1’ 2, 3, { ] - ® o

In the same manner, the equations for the axial vibration, where no

transverse deflections are allowed, can be found to be

(28) ve=yv B.C. => v(0,t) = v(4,t) 20

and the frequencies of vibration are found to be

nn [AE - :
wna l\/‘p n 1, 2, *» [ ] . ®

2. Case II - Spinning in Free Space

In order to study this case, we let R = ® gs in Case I, but now
specify that é =@ = constant and let the tension be a constant with
respect to time but vary along the length of the cable. When the radial
displacement is a function of r alone, it implies that the end mass is
allowed to seek a steady state equilibrium position along the r,p refe-
rence line and then is held fixed relative to that line for the remainder
of the problem, This has the effect of eliminating the time dependent

boundary conditions, since the position of the end mass is fixed in the

rotating reference frame.
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The following linearized equations result from equations (23) and (24)

2 2
o2 * 2
(29) vrr + AE v AE r
and
*e 2 AE
(30) u=uw + 5 (urvrr + vrurr)

where w = ¢ = constant. The boundary conditions are

v(0,t) = u(0,t) £ 0

2 —A—E- 2= =
(2+Vv)ow M Vr 0 r=

and

u=20 r =/

In order to solve the linear set, the Coriolis coupling terms have
been neglected, This cannot be justified, since the Coriolis terms
appear even in the linear equations. The equation which yields the

steady state tension is equation (29) which has for solution

v(r) = B, sinor + B, cos ar — r

2

where

2
o = [



21

The boundary conditions for v << ¢ become

v(0,t) = 0 and AEvr(z,t) - Mw?y for t 20
which yields

- =1+Mw AE
32 0 and OtBl cos Ol

giving

o 2 AE
w=uw + S [urr(oa?.1 cos ar — 1) uraanl sin or].

For ¢ << 1, i.e. small spin rates, we get

: 2 2 2
o SOs or Mo Liz o ,.2_ .2 Mw™g
OB, cos Oxr = - [1+ AE] [1 + 5 (2 r )}[1 +-————-AE] .

This is a reasonable assumption for the linear equations, since, as pointed

out previously, nonlinear effects become important only as the spin rate

becomes large. Hence we get

2
ve 2 2 u_pw r
- 2 , AE o ,2_ 2 Mw #! _ _x
u ““""p{“rr[eAE(‘ r) + AE]’ AE}

or finally

(31) l; =y w2 + {urr[(lz - r2) + !é] - urr} wg .

To reiterate, the assumption of small displacements and slow spin rate

have been made in order to -lineari.ze the equations,
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Letting
u(r,t) = X(r)T(t)
ylelds
and
(33) X (C-ﬁ) w2 = X+ (8% +wI)X = 0
rr 2 r
where C & lz[é +-%7]. If C is large, such as it would be for a large

tip mass to cable weight ratio, and if we divide by C and neglect terms

of order r/C, (33) reduces to

2, 2
(34) xr+-(ﬁ-—+—2“i—)-x=o

r Cw

This is the vibrating string equation again, modified by the rotational
2
rate w . Hence

5 )

X(r) =B, sino.,r + B_ cos Q,r where o, = Bt
1 1 2 1 1 c w2

The boundary conditions are X(0) = O and X(2) = O which gives

B, =0 and sin.alz = nx
and
2 22 - 4 2
(3ka) 2 = SR T _ 2.2 {im)——“ - } .
! Pt
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This shows that the frequency increases as (1) the spin rate increases,
(2) the tip mass increases, or (3) cable mass, pf, decreases.

The effects of spinning and the effects of the corresponding tension
increase can be separated as follows: from equation (30),

u = u«»e + I u »
p rr

for a constant tension which is not necessarily the steady state equi-
librium tension

p 2 2
er-l—T(w +B)X =0

and

P 2 2
X(r) f B, sin QT whgre Oy '\/E (& +89),

which gives

2
B2 - T(nx) _w2

2 n’ 1, 2’ LE % ] .
pf

This implies that for constant prescribed tension, spinning the system re-
duces the natural frequencies. If we substitute for T,*its steady state

equilibrium value, and we get

52=w2 [l;_l (mt)e"l] n=1, 2, ...

which shows that spinning increases the natural frequencies if the tension

is determined by the steady state equilibrium position of the end mass.

3, Case IIT - Spinning in Orbit

If we now let R be governed by the Keplerian equations of motion, ¢ be
governed by the equations for a rigid rod spinning in orbit, the tension
again be only a function of r, and neglect the Coriolis coupling, we can
again separate variables and obtain solutions to the linearized equations.

As pointed out for case IXI, neglecting the Coriolis coupling cannot be jus-
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tified and may be a severe limitation on the results obtained by this analysis.

The steady state tension, AEVr is governed by the following

r

%E(r + v)[92+-;§§[1 + 3% cos 2(p — e)]] +v. =0

with boundary conditions

AEv_(2) = Ml[wg + ~§3[1 + 3 cos 2(p — 6)]] .
r
2R
The expression for vr(r) which results is

v (r) = [AEMI + == AEp (z )] [ + -2-;- [1+3 cos 2(p — 9)]:‘

This and the expression for vrr(r) is substituted into (24) and then
linearized to yield

(%) 5= ule? + =55 (1= 3 cos 2o - 1] - (o~ otn 260~ 0) )
2R R

""[('f‘:‘ﬁ %") M&’E*‘;R%EHB sin e(m-e«)]].

Equation (35) is the same as equation (31) if R = ®, and ¢ = w, and
@ = 0. The mode shapes can be obtained for certain simplified cases as
shown for the free space solution of equation (31).

The corresponding time varying equation, after separating variables,

is of the form

(36) | ¥+(p+e f(t)}m=o .
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The details of the separation of variable will not be shown here,
since only the general form of the time dependent function, T(t), is
discussed. In order that separation of variables be applicable, we

must have

o =2 sin 2 ~e='§
o R3sn(¢ ) =95

or ()%= - 25 con 2(0 = 0) + o(0)1% .

This differential equation governs the variation of ¢ for the reference
frame and introduces the time dependency, f£(t), into equation (36). The
above equation for ¢ is the equation for a rigid dumbbell in orbit. If
the length of the dumbbell is assumed to be a constant, the equation may
be obtained from the equations for an elastic dumbbell which are derived
in chapter IV. Equation (35) and the form of equation (36) agree with
those derived by Targoff 7.

Targoff discusses stability forw 2> 3 é where he shows that
equation (36) can be approximated by the Mathieu equation. He concludes
that the system is unstable in some cases but that a small amount of
damping will stabilize the motion.

It is questionable whether sufficient damping will be present for
small deflections. As will be demonstrated in chapter III, including
viscous damping in the equations for the cable does not produce linear
terms in the equations.for the transverse motion as it does in the equa-
tions for the axial motion and, hence, does not yield the desired damp-
ing effect. Flexural damping would certainly help, but the curvatures
involved are so large for linear deflections of long thin cables that

the flexural damping present would also be negligible.
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Many approximations have been made in order to achieve a solution
and the effects of these assumptions are difficult to assess. Even a
numerical integration of the complete equations would be difficult due
to the time dependent boundary conditions., Furthermore, if complex
structures are to be studied, there seems t¢ exist no method cf stabilicy
determination that can serve as a design procedure.

However, a system such as the one discussed can be approximated by
point masses and massless springs. The advantage offered is that the
stability properties of the resulting equations of motion have been

extensively studied.



CHAPTER III

LUMPED MASS MODEL

In this chapter, the exact equations of motion for the lumped
system are derived using Lagrange's method. Viscous damping terms are
also derived for the lumped system for the case where the neighboring
mass points have velocity dependent dampers between them, These equa-
tions were numerically integrated and the results appear in a later
chapter.

The continuous system in Figure 1 can be approximated by a number
of mass points connected by linear elastic massless springs as shown
in Figure 2.

The Lagrangian for this model is now a function of the variables

li’ ¢i, li, ¢i, t. The equations of motion are given by

4 é;;. -1
dt aqi aqi

=qQ i=1,2,...,n+1,

From the continuous analysis, we showed that certain terms from the kinetic
energy contribution to the Lagrangian canceled with the first term from

the expansion of the gravity potential contribution when the center of

mass moved in a Keplerian orbit. This fact will be demonstrated in the
developments of the equations for the simple models that follow.

The kinetic energy is
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n+1
=l .2 * 2 lz .2 . 2
T = 5 M [R+ (R8)7] + 5 M 25+ (£,9,)7]
i=1
n+1
where M& = total mass of system = Mi .
i=1

The magnitude of the vector from the center of the Earth to the ith mass

ig given by

(37) Iz, | =\/R2 + 12+ R4, cos (o, — 8) .

The length of the spring between mass i — 1 and 1, from the lag of

cosines, is

> 2 _ . _
7} \/‘1-1”"1 Segty g o8 (o g 7o) .

If we define the unstretched length of each spring as liO’ the elastic

potential may be written as

n+1

1\ _ 2

Vg = ez ky [eg = £56]
i=1

where ki is the spring constant of the ith spring. The gravity potential

in expanded form is

ntl i 2, cos (¢i - 8) l? 5

Vo =<6 =11~ R ~—5[1-3 cos (q>i-e)]
{ =1 2R
3
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The Lagrangian is L « T — VE - VG’ We will now proceed to compute the

necessary derivatives, namely

k-
) A 2 i+ _.(J_t_l)_.
alj Mj{tjcpj Mj ( [t

108 (05 =0 )]
5+ 1 RE

k. 1
1
"MJ< "_é'(j Ly~ 2y cos oy _ g ~0y)]

LI."-::M!?cpj and %—t-[—a—l-'-] anzt +Ml
3

i J"’J 3‘”1
%0 P5

k !
AL {__ j+1< (j+1)
- = M e—— [l

k £ : 5G?
=3 io - b |
( - 1 sin (CPJ q’j -1 )] + 2[{3 sin 2(@1 = 9)} d

Hence, the general equations of motion are
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s . k l .
2__i+1/. _2(i+1) _ _
(38) £ = 2,0 _MJ- (1 T (2= 25 4 cos (fpj ?y 4 ]

k. !
Ay -0 - -
M, (1 ej) (£ =25y cos (05 _ ) ~9))]

6Ly
+ —3 [1+3 cos 2(p, — 8)]
2R ]
and
. 2ln(pj k. +1 l(. +1)o l. +1
oo 5 PR By taenifhes o
j | lj ] Mj ej +1 lj i j+1

k, b N )4
i I (¢) j—1 - ] - 3G -

j = 1’ 2’ L ] . ., n+ 1 *
The following definitions will account for the end conditions

tO = Q and kn + 0 =0 .

These two definitions will yield the proper system of equations for the
subsatellite-cable model considered here. The Lagrangian derived above
will have the same form for any system of particles connected by linear
elastic, massless springs. The only change will be the elastic potential.
Its form will depend on the manner in which the system‘is tied together,

but the method of derivation is unchanged.
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At this point, let us examine how damping may be put into equations
(38) and (39). 1If we consider viscous (i.e, velocity dependent) damping,

the force may be written as

= - Cie

Foavp i

where C, # damping factor of ith spring whose rate of change of length

i
is e,. From our previous calculations of e, , we can derive
(40) o, = Lty ot 4t Tyl g 4y g cos (0 g = 9g)
i e
i
e 10 = 79;) sin o, _ 5 —9y)
. ei *

In Lagrange's equation of motion, this contribution is treated as a
generalized force since it is non-conservative. The virtual work done by

the generalized force is
Q;8q; = [component of (Ciei) along qi] 8q,
(where Qi must be a moment if qi is an angular coordinate. In this case,

the qi's are the li’s and ¢i's.' We now turn to the geometry of the pro-

blem

Pi-1 P51 P11



From the law of sines

sin ¢
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sin (o, _ ; — o)

i
-1

The componentg of Cie.

L]
e, cos Q,
i i

€4

along £, and normal to f, are
i i i

and -~ C.,e, sinC,
i'i i

respectively., The contribution of Ci + léi +1 is
“Ci 1% 41608 € and =G, g8 4 sing
where
sin (9, — o )
€ = 180° - L and sin v, = b b+l i+

Thus, in equation (38),

hand side if damping is

i +1

the following terms must be added to the right-

to be considered

= Dagy g+ 4t 4] cos (o

Coo( L. _ 1ds
(M)_M_j{i 11 -1

+

LRSI

e

k|

0,) sin (o,

e

ES i

_ = 9,)
1 1}cosOLj

R T LT

3

lj + 1!

JJeos (9, 0, )

+
{fili b4

M.
J

+

L atyloy o, +1) sin (0, ~9, 1)

i +1

o,

i +1
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and for equation (39)

(2) - —1 {%ame as first term in (hl)}'sin.aj

c
- }-iﬁi—l- same as second term in (hl)} sin €
i3

j o
Now that the complete nonlinear equations of motion for a lumped
mass model have been derived, the next step would be to consider the
simplest case and gradually increase the complexity. However, before
this is begun, the effect of the expansion of the gravity potential which
uncouples the relative motion from the orbital motion will be examined,

To do this we examine the dumbbell model shown in Figure 3.

1. Dumbbell Model

Thus far in the analysis, the center of rotation of the relative
motion thas been assumed to move in an undisturbed Keplerian orbit. There
is, however, a coupling between the relative motion and the orbital
motion such that the orbit cannot be exactly Keplerian. The purpose of
this ehapter is to show what bounds exist in the center of mass motion
and also to show that the assumption that the center of mass moving in an
undisturbed Keplerian orbit will produce errors which are of the order of
the errors which result from a single precision numerical analysis.

The essence of gravity gradient effects on finite, non-axisymmetric
bodies in orbit can best be shown by starting with a simple two mass
dumbbell model (Figure 3). The two masses are connected by a massless,

linear elastic spring. The exact equations of motion can be derived by
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using Lagrange's equation. For the dumbbell model shown in Figure 3, the
anglé ¢ can be measured from either the nonrotating x axis or from the
local vertical. The former provides a slightly simpler form of the equa-
tions while the latter allows one to derive the conservation of angular
momentum equations more directly. There is, however, no clear‘cut reason
for prefering either one of the two coordinate systems over the other.
For the dumbbell model shown in Figure 3 and measuring ¢ relative
to the x axis, the kinetic energy and potential energy are respectively

(43) T = uR2 + (6%) + 2 (1))

and

(bd) Vv = — aM {?R? + 12 + 2Rf cos (0 — )] 1/2

+ [R% + 4% = Rt cos (6= )] ”2}+ k(2 = 1)

where G = product of universal gravitational constant and mass of Earth

k

spring constant
M = end mass.,
The resulting equations of motion are

Orbital radius

Y a2 G JR+ 4 cos (6~ 0) R~ 4 cos (6 —a)
(15) R =Re 2{ = + 2

Orbital angle

““  me , Gysin(6—g) [1 _ L
(46) © = —== + = {A B}
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Relative angle

(47) ;a-m_GRSinge—Q){__

1
2 21 A

1
o [
—

Spring half-length

(48) .l.=lc;2_g{l+Rc:sL9-Q)_ + 1~&c§s (e*‘gp_)_}_ﬁ(l_lo)

where

3/2 3/2

A=[R%+ 12+ Ry cos [0~ )] and B =[R%4 42— 2Ry cos (8 - 9)] .
The coordinate system taken with ¢ measured from the local vertical
to the Earth yields slightly different equations., The Lagrangian is now

given by

o) -1/2

(b9) L = M[fza + (Ré)2 + 15+ 12(<;> + 6)2] + MG {[RE + 12 + 2R! cos @]

-1/2
+ [R2 + 12 = 1 cos o] }'- k(s - 10)2

and the equations are

Orbital radius

LX) o

(50) R_Ree_g {R+;Acosg + R"Bg’cosg}

Orbital angle

(51) g—t- {ZM[R% + te(c; + é)]} =0



36

Relative angle

s @ .

o _2o t+ e GR _. 1_1
(52) o =-6- ll t 5, 8in 0 {;-“g,}

-

Spring half-length

Y e e L eN2 G L +RcOSO ! ~Rcos oo | _k,, _
where
A' = [R® + £7 + 2R{ cos ¢] and B' = [R” + £ — RZ cos o] .

As stated above, the advantage of this coordinate system is that the
conservation of angular momentum can be seen directly from equation (51).
‘This happens because in this coordinate system, © is a cyclic coordinate,
that is, a rotation of the reference for © does not change the value of
the Lagrangian,

However, the conservation of angular momentum can also be seen for
the original system after some manipulation. Multiply equation (L46) by

% and (47) by ¢/R and add the resulting equations to get

R6 . 1o , 2RO , 2f0 _
(54) . TR R =0
d 2 2°
or at RO+ 12 é} =0

which is the equation for conservation of angular momentum. Either
coordinate system may be used for the analysis. The second system,

where 6 is cyclic, facilitates the energy analysis that follows while
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the simpler form of the equations resulting from use of the first system
may simplify the numerical analysis somewhat,

For the second system we can eliminate © from the total energy as

follows: 1let H be the angular momentum of the system, then for equation

(51) we get
(55) o(x? + 1) + 1P = Lo
or
2° H
. AL —
(56) 6 = =N
(R® + 19)

This expression for © is now put into the expression for the total energy,

EO, which also is a constant since the system is conservative and has no

external forces
E.=T+V

hence

- 2 e 2. 2 » - — 2. »
EO-M{:R2+R (— 150 + B/2M) +12+12<¢+( gagg+ngzu_)_>2]

(% + 19 2 (% + 192

24 2R! cos Q]~1/2+ [R2 + 12 — 2R{ cos m]_ilé}

2

- MG {[R +
. 2

+ k(¢ zo) .

Collecting terms which are positive definite yields

. 2
0 1.2 o) 2
, 1+(R)
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and the fictitious potential V It is called fictitious because it

0.
contains terms which come from the kinetic energy term, However, it may

be treated as a potential function. We get,

2

B 1
(57) v, = . {(
O wm@r® + 1A R + 12 + 2Ry cos g)1/2

- : }-
(R2 + 12 2R2 cos ¢)1/2
but

E.=T, +V and V,=E -—T

or

V. <E since T.20.

(58) Vo=—">5 - % -

Equation (58) is the fictitious potential derived for a point with mass

12

2M in an inverse Bquare attraction field as shown in Goldstein =, If we

expand the fictitious potential (57) in terms of the ratio of the body

dimension to orbital radius, namely £/R, we get

v, = i"; [1 + (£)? +e(§)“] - ﬁl —é{(ﬁ)z + 2L cos cp] +

kMR
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[a(~) cos ¢] + o )#} Hﬁ{ -[(’)2 2L oo ¢]

+ %[h(é)z cos® q>] + 0(-}%)3}

or

H2

hom ]+(l){u MGI:1+3 cos Q@B

As expected, the first term is the term in (58) for a point mass and

r"‘"‘l

VO =

the second term is the perturbation due to the finite size of the body.
When this potential function is plotted versus R for a fixed ¢, the shape
of the potential "well"” is essentially no different from that for a point
mass. This is because (t/R)2 is of the order of 10 6 even for a body
with dimensions of the order of miles. This éotential can also be plotted

versus the relative angle @. Relative minima are found when

v 3%y
559=0 and —-é-Q>o
o0
where
oV
M
20 15 (42 ain

and 1is zero at

an’ g’iﬂ,noc
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3%V
a<p20' = 3()° §° cos 2p

which is greater than zero when
o =0, +w, ¥+ 21, . « .

and is less than zero when

¢=

3%v

Thus, the dumbbell is stable for a circular orbit when —-2—0 >0 or,
| X

as expected, when the dumbbell points directly towards the Earth. This

+5 ¢+,

analysis also shows that when the dumbbell is pointed normal to the radius
from the Earth's center, the position is unstable,

If the system is not in a circular or nearly circular orbit, the
upper bound on the energy is higher up the sides of the potential well
and a conclusion about gravity gradient stabilization cannot be reached
by this analysis. This corresponds to an elliptic orbit, for which the
orbital angular rate changes periodically. The dumbbell cannot stabilize
itself about the local vertical for other than circular or nearly circu;
lar orbits due to this changing orbital angular rate. It is entirely
possible that the system could continue to increase its spin rate while
the orbit decayed to a circula? orbit. This would correspond to starting
at the top of the energy bounds in the potential well and the moving down
towards the bottom of the well while the orbit lost energy and the relative
motions gained energy through an increased spin rate. It can be con-

cluded that if this possible increase in spin rate is undesirable from a
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design viewpoint, the system should be placed in a circular orbit.

The actual motion of the spinning elastic dumbbell in orbit was
found for certain initial conditions and parameters by numerically
integrating equations (45) through (48). A fourth order Runge-Kutta
technique was used with double precision arithmetic on an IBM 7090
digital computer.

Figure 4 shows a typical plot of the deviation of the orbital radial
distance for the dumbbell from a Keplerian orbit having the same initial
conditions, Figure 5 shows the corresponding spin rate, ¢, measured from
the nonrotating coordinate system shown in Figure 3., Note that the spin
rate is drastically reduced as it passes through perigee and, even at the
next apogee, it has not recovered its spin rate. Since total energy is
conserved, the loss represented by the slower spin rate must show up as
a movement of the center of mass to a higher emergy orbit. Figure 4
shows that this is precisely what happens. The radial distance is as
much as 108 feet longer after passing perigee. Other cases were found
where the spin rate increased during perigee passage and the radial dis-
tance decreased accordingly. This exchange of energy from the orbit to
the relative motion would be destructive if it were to continue indefinitely.
The change in radial distance is quife small compared to the distance
itself and the relative motion is 'unaffected by these changes for the time
interval of most computations.

As a consequence of the above results, equations (L45) through (u48)
were also expanded in tefﬁs of (£/R) and only first order terms retained.

The resulting equations are

Orbit
(59) Rsaee-g-é- and  (60) ez-?-g?-

w
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Relative motion

*e

Gt

. K
(61) l=lq32+-;£3[1+3cos2(¢—6)]'—'ﬁ(l—lo)
and
(62) o =—2 3G oop-0) .
! 2R3

The effect of the expansion and dropping of higher ordexr terms is
to uncouple the relative motion from the orbital motion as mentioned
previously. Equations (59) and (60) are those for a point mass in orbit.
Equations (61) and (62) are those of an elastic dumbbell in free space
plus an additional term in each equation from the gravity gradient,

These equations were also numerically integrated as was the previous
set of equations except that single precision arithmetic was used, A
comparison was made between the relative motion calculated using the exact
equations (45) through (48) and the expanded set shown above, (59)
through (62). The two calculations agreed to within five significant
figures and the differences appeared to be due to round-off for the single
precision cases, This seems to justify the use of the expanded form of
the equations for numerical computations, even if the system is in an

elliptic orbit.

2. Single Mass Model

An alternate simple spring mass model to be analyzed is a light end
mass attached to a much heavier mass by a linear elastic, massless spring

as shown in Figure 6. This is the simplest lumped mass model which
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approximates the original distributed mass system shown in Figure 1. It
will be shown below that the equations of this single mass model and
those of the dumbbell are identical to terms of order (I/R)g. The

Lagrangian for this case is

(63) L = g {%2 + (Ré)2 + }2 + (ch)2 + [2§} + 2Réz$] cos (p —'©)

M
2 + oR2 cos (o0 ~ 92)1/2

-+

sin (@ — ©)[2RO! "2Rz¢]}'+‘ 5
&

-k, .,
2(1 zo) .

However, if the equations of motion for 2 and ¢ are derived and expanded

in terms of f/R as before, we get

(6%) ; - zée [1 + 3 cos 2(p — 6)] +'~(z = 4, ) =
ax

- (r; - Réz + %2) cos (p — 6) — (9 + ERG)R sin (p — ©)

and

(65) o+ g79 +~2§3 sin 2(p — ) =
2R

+(R"R9 + 2).?2__(2__). (e+2Re\RCOS (L 9)

L

These equations differ from (61) and (62) only by the two terms on the

right-hand side which are, however, zero for a Keplerian orbit. Thus,
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equations (64) and (65) are exactly the same as those for the dumbbell
(61) and (62).

The consequence of this is that one can consider either a dumbbell
or a single mass connected to a much heavier magss. The equations of
motion are identical if terms of the order of (l/R)2 are neglected. This
could also have been shown directly from the Lagrangian for the dumbbell,
equations (43) and (44)., If the potential, V, were expanded in terms of
1/R, it would be seen to be independent of rotations in (p — ©) equal to
nx. In other words, the dumbbell has the same motion (to order (/R)
independent of whether it was initially started at ¢ = ®; or o, + nx.

These equations expanded in terms of {/R are still nonlinear and
do not readily yield a solution. The usual procedure is to linearize the
nonlinear equations.about some stationary point to determine the motion
and stability in the neighborhood of the point. A stationary point is an
exact solution to the nonlinear set of equations for which the accelera-
tions or second order derivatives are identically zero. One stationary

point for the above system corresponds to gravity gradient stabilization.

3., Single Mass Model, Gravity Gradient Stabilized

As has been shown before, in circular or near circular orbits, the
system is in a bounded potential well and must be stable in the sense
that oscillations may exist but may not grow without bound. The nature

of this motion can also be shown by examining the linearized equations.

As the desired reference state, we choose

» .

1, = const, R = const, 8 = 9, = const, and Py = eo .
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Thus, we get for equations (61) and (62), where q, and q, are the devia-

tions from the reference state, A and % respectively,

. T . 262 .
e lg 2~k 26 4 S 2_k, _
(66) ay ["’o M RE]ql T BlP0dp T T3 T e ults = %)
and
- mo . Zg
(67) Q=7 T 5% ¢

These can be simplified by ehoosing the stretched length,

L

(68) -
~ 36°)

dy
(]
je-2 el ic 4 o

which is the stretched equilibrium length of the rotating spring, and

noting that

2 G 2

T e = (o)
R3 0
which leaves
.o _ -15— .2 * e
(69) q;= [ il ]ql + 21 8q,
and
oo — 28 ¢ _ 02
(70) 9, = 4y T 3€%, .

8

The characteristic exponents for a rigid dumbbell for which q; ® 0, are
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r=+iJ3e .

Thus, the motion is periodic with a frequency of*Jé 6. This agrees with

the frequency found by Paull. The frequencies for equations (69) and

(70) are
kK .20 02 o2k . .k
(E + ko ) (ﬁ) - 49 v + 520
(M) r=%1 s = 5
and
- 46° 5+ 520™
(72) +i >

From equation (68) for the steady state length of the spring, we
can see the k/M must be larger than 392 for a physically realizable result.
1f k/M >> 62, we can expand the inmer radical in equations (71) and (72)

and show the orbital effects on the natural frequencies., After expanding,

one gets

(73) r»=+iv36  and ii\/§+3é2 .

The first root is the same as that of the rigid duimbbell while the second
is the natural frequency of the nonspinning spring mass system except for
the additional term, 3é2’ which effectively "stiffens" the system.

Let us now examine the stability of the dumbbell moving so as to

always have its axis tangent to its orbital path. For this case,

®; = Gi + g/2
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and we get for the linearized equations

. K e2 . . BGIs
(73) ql"[‘ﬁ"a‘ Ut 2P T TS 9
and
e 2‘9 .
G
(Th) q, =-2 q -&
1 .zs 1 553

where ‘s is given by

k‘o
1
s k_ }_ 2) '
The corresponding characteristic equation is

a2 .
(75) x[x3+(§+lg—) x-—6e3] =0 -

One root is obviously zero. For the remaining cubic, if

there will be one real root and two conjugate complex roots. A necessary
condition for the one real root of (75) to be negative, and, hence, yield
a stable solution, would be for all the coefficients of (75) to be of the
same sign and non-zero. This is not the case; therefore, the solution

is unstable as was shown by examining the petential.
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4., Single Mass Model Spinning in Orbit

The next item to be discussed is the stability and motion of the
dumbbell spinning in orbit. Equations (59) through (62) apply and can
be linearized. However, since the system is spinning, (¢ — ©) is not
a constant and the additional nonlinear term results from the sine and
cosine terms in (61) and (62). Furthermore, there is no longer a station-
ary point about which to linearize. A stationary point exists for the
spinning system only in the limit as R — ® in which case the equations

become those for an elastic dumbbell in free space, namely,

. ‘2 _ -k. _
(76) t= 1’ =k (1= 1)
and
L X ] * d .
(77) Q=" _2-1[@ or 'a‘t’ (12¢) = 0 .

A stationary point is given by

ls = const. and P = const.

Thus, we define the stretched length of the spring, ls’ at R = ® to be

the free space stretched equilibrium length

2=

Mo
e

ls {

We may now linearize equations (76) and (77) about these reference motioms.

=

By defining
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1= ls + q1 and o = QO + q2

we get
. - - _l_(_ _ L] 2 LI
and
ol %o .
(79) @W="7"9 -

The characterigtic exponents of this system of equations are

k. . 2
x=11/ﬁ+3<p0 , 0, 0 .

This implies that the frequency of oscillation is~jk/M + 3@02 which is
the same as that found for the gravity gradient stabilized case., The
repeated zero roots imply that a constant and a term having a linear
growth in time are also solutions to the linear system of equationms.

However, equation (77) glves us the fact that angular momentum is conserved,

or that
z%m = const, = H .
Putting
. 2
2 _H
(80) o =

-



into equation (76) yields

.
.
AV]

k
—u (74

N\NIL‘L‘.

which, after linearization, yields

where

B={§+3(;)02] .

The characteristic exponents of (81) are easily seen to be +Vk/M + 3¢02 .

After linearizing equation (80), we get

. 20
0

Q5 == q

2 L, 1
or

2p
-0 |_A B

(82) a9, 7 [Bcos Bt +Bsin5t]+c

where A, B and C are constants determined by initial conditions., From
(82) it is easy to see that the solutions for 4 and q, are in fact neu-
trally stable and that the instability indicated by the repeated zero
roots is a consequence of not conserving angular momentum., If the class

of solutions is properly restricted, the solutions are all neutrally
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stable. The importance of this "trivial instability" will be shown in
what follows for the system where R is finite.

When R is finite, the equations can be linearized around the same
free space motion as before, but now, this motion does not represent a

stationary point. After linearizing about

k /] @. = const. = reference spin rate
, - ¥ ‘o o
8 gg_q')e___(_;_, ? .
MoOTO and Q5 = 9ot *+ Py itial

we obtain the spring length deviation

. - - .12 _ . 2 _ ~—G—. _ z_G_ - . .
(83) q, (M P 2R5)_ 3 2(p, ~ ©)| 9, + 20429,
3614 364,
- 3 sin 2(q>O - e)q2 + o cos E(mo - 8)

and the angular deviation

(84) 22 = — [i% cos Z(mo - 6)} qQ ;2—41 —'igg sin 2(p, — ©) .

s R
These two equations are valid for any orbit and spin rate. To this point,
the two changes in the original nonlinear, exact equations (45) through
(48) are: (a) an expansion in f/R and keeping of first order tarms, and
(b) linearization of this expanded set about the free space motion where
R = ©, These equations, (83) and (84), constitute a linear, homogeneous,
coupled set of ordinary differential equations with time dependent co-

efficients.
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There are basically two such coefficients: (1) G/R3 and (2) cosine
and sine of 2(m0 — ©8). In general, these two types of terms are periodic
but do not have the same or commensurate pericds. There is no general
stability theory that applies to a system of equations such as (83) and
(84). The interesting special cases that can be treated analytically
have already been shown. However, the case where the two types of terms
have commensurate periods can be treated using Floquet stability theory9

and a numerical integration of the equations.

5. Floquet Theory

Equations (83) and (84) can be transformed into four first order

equations by the introduction of two new variables

This yields a system of equations whose general form is

(85) {a} = (a(6)] {qa } +{p()}

where [A(t)] is the square nxn matrix of coefficients, {b(t)} is the 1lxn
column matrix of forcing functions, and {q } is the 1xn column matrix of
dependent variables,

1f [A(t)] has only constant elements, system (85) can be treated by
standard methods such as described in Chapter 6 of Reference 13. However,
this is not the case for the dumbbell spinning in orbit. If [A(t)] is
periodic, and its largest period is commensurate with the largest period
of {b(t)}, Floquet theory may be applied to system (85). To put (85)

into the proper form, we introduce an artificial variable, Z, such that
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Z & O which yields a homogeneous set, namely

[\ T u AR

q { q
Mo lam o e |
1 { :
R (I
9 { N
. [o] | 0]
SR 4\
or
(86) {a} =(a'()4a} .

The matrix [A'(t)] is periodic if

[a'(t +7)] = [A'(£)] t20

for some period T > O. A matrix [F(t)] whose columns are linearly inde-
pendent solutions of (86) is called a fundamental matrix. Thus, [F(t)]
satisfies (86). Also, if [F(t)] is a fundamental matrix, so is [F(t + )]
and there exists a nonsingular matrix, [M], sometimes called the monodromy

matrixlh, such that

(87) [Fle + )] = [F(£)1[M] .

[M] may be reduced to its Jordan normal form and the eigenvalues,
Ays o = oy A are called multipliers. None of the multipliers vanish

since

T

MAy o o o Ay = det[M] = exp\/ntrace [A(t)] dt # o.
‘ o
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In fact, since the trace of [A(t)]‘l 0 for most cases (i.e.j{jaii(t) z 0),
i=1

we conclude that

det [M] = Mhy o o o A = 1.

The trace of [A(t)] being zero means that the acceleration, Ei’ does not
depend on the velocity, éi' This is true of any spring mass system in
orbit as long as no velocity dependent damping is present, If for example,
viscous damping is present, the trace of [A(t)] would be a negative con-
stant and the product of the \'s would be less than one. As will be

shown later, this means that the system for most cases is asymptotically
stable, Stated physically, this means the system cannot continue to
oscillate if damping is present, unless it is forced.

Let us now consider how to obtain the matrix [M] and the multipliers.

If we take t = Q0 and let

(88) [F(0)] = [1]

where [1I] is the identity matrix, we see that

(89) M] = [F(x)] .

We can obtain [F(t)] by numerically integrating system (86) n + 1 times

for the various initial conditions which yield equation (88). That is

(a0 (1) [a,] o] {a,00] o]
o, o] la |1 | o

%: BRALERE ?24:“'””: >=<:k ’

{\i(o)'J 56‘ &i(o)J 06; ‘i(o)J .ij
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This amounts to integrating the homogeneous part of the original non-
nomogeneous set, (85), for various initial conditions and, lastly, inte-
grating the nonhomogeneous set with zero initial conditions (remember that
Z =1, but Z is only an articificial variable). The system of equations
is integrated over period T each time and the monodromy matrix is formed
as in (89). The form of [M] is general except for its last colummn where

[M] is given as

(90) (M] =

| -
baee

The last column is the variable Z which is a constant and, hence, must
retain its initial value throughout any given solution. From the form of

(90), it is easy to see that )\ = 1 must be an eigenvalue for any forced
set.

Let us now examine the stability implied by various )\'s. We first
assume [M] to have n + 1 linearly independent vectors or, stated another
way, that the Jordan normal form of [M] is diagonal. By a similarity

transformation of (87), we can get

[eIrF(e + )Irel™ = [el(F(e)Irel (eInmre] ™
and defining tF'(t +1)] = [CIF(t + 7)][Cc]
and [3] = [elmier

we get [F'(t + )] = [F'(t)][J]
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where [J] is the Jordan normal form of [M] and [F'(t)] is still a fun-
damental matrix of system (86). If the columms of [F'(t)] are written

as the linearly independent solutions, we get, in general,

(91) {éi(t + 1)}'= 9 {éi(t)}' i=1,2, ..., n4+1 .

From this, we can see that during the time interval t to t + T the magni-
tude of the vector decreases, remains constant or increases according to
’xil. This is the stability criterion sought.

An interesting case results when the monodromy matrix is not redu-
cible to a diagonal Jordan form. When this happens, it means that at
least one ) 1is repeated at least once and that there are not n + 1
linearly independent vectors associated with the monodromy matrix. If
the repeated roots are not of unit magnitude, this has no bearing on the
stability question. However, if they are equal to 1.0, it represents a
polynomial growth with time. The order of the polynomial is one less
than the order of the corresponding diagonal block matrix in the Jordan

matrix. In summary,

[xi' > 1.0 exponentially unstable

,ki’ < 1.0 exponentially stable

'Xi, = 1.0 (not repeated) neutrally stable

,hi' = 1.0 (repeated) either neutrally stable or polynomial

growth with time depending on [J].

To point out the application of the theory, let us examine a well-
known equation which can be handled analytically, namely, the equation

for the forced harmonic oscillator
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(92) .i(t) +9.° X(t) = cos wt.

0

By defining X= Y, we can put (92) into the form of (86).

P
) 5 7]
Y 0 -wo cos wt Y
X = 1 0 0 X
z o 0 0 z
n _

The column vectors of initial conditions to form the identity matrix are

1 0 0
oY , (1) , (o .
0 0 1

In this case, the period T = 2r/w. Since the solution to equation (92)

is known, we can form the monodromy matrix. Let w 2 u ng and w = 2x for

0

simplicity. We get

- o 2]

3x

(93) (M} =] o -1 0

| 0 0 1__‘L
The characteristic equation is

(1L +A)(1+2)(1-2) =0 . A==-1,~1, 1.

The roots are repeated and the solution may or may not be stable. Now,
instead of finding [J] for (93), which for arbitrary matrices may be

difficult to do directly, we determine the rank of the matrix
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(ou) {[MJ - (- 1)[1]1 = {0 0 0

from which we can find the nullity of [M] (&.e., (nullity) = (order)
- (rankz). The (multiplicity)—(nullity) of the repeated root gives us
the number of off diagonal entries for the Jordan normal form of the
matrix [M]. The rank is defined as the order of the largest nonvanishing
subdeterminant, In this case, the rank is unity because all determi-
nants of order two and three are obviously zero. Thus, .the nullity is
equal to the multiplicity and the Jordan form has no off diagonal terms
and the system is neutrally stable.

Now for the case for w. = w, which we know to be unstable, the

0

monodromy matrix is

1 0 0
(95) [M] = 0 1 1/2 .
0 0 1
The characteristic equation is
(1= =-2)1=-2)=0 A=1, 1, 1.

Again the roots are repeated but now the multiplicity is three and the

nullity of
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0 0 0
[[M] - (1)[1]} = |0 0 1/2
0 0 0

is obviously again two, so that the (multiplicity)—(nullity) is one and
the Jordan form of (95) has one off diagonél term., This represents a
linear growth with time of one of the solutions.

Note that the trace of the coefficient matrix for (92) is zero
which implies that the product, X1X2X3 = 1,0 as it must be, As previocusly
mentioned, the artificial variable Z introduces a predetermined ) equal
to 1,0. Periodic forcing functions in a system of linear equations can
only add particular solutions having, at most, a polynomial growth with
time and never an exponential growth or decay.

One more example will be shown to point out the effect of viscous
damping which was mentioned at the early part of the discussion of Floquet
theory, Given the damped equation
; + Ci +X=0
where a forcing term has been omitted at no loss of generality, and

defining X = Y, we get

oo

o 1 X

(96)

g .

-1 -C Y
Here the trace of the coefficient matrix is ( — C), and, thus, we know

T

= - = o CT
M exp\/h( c)dt = e .
0
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Since [A(t)] in (96) is a constant matrix, any positive, nonzero, finite
number can be thought of as the period of the matrix. The monodromy

matrix for C =2 and t = 1 is

25_ 1 én 1
[M] =
-1

and the characteristic equation is

Thus the roots are

hence

h1x2 =e 2 = e C since C =2, 7 =1,
Here the \'s are less than 1.0 in magnitude and, therefore, represent a
decay or asymptotic stability. Had C been a negative number, an asympto-
tic instability would exist. The effect of the forcing term must be
examined only when one of the roots of the homogeneous set has a multi-
plier of 1.0. Unfortunately, this is the case for the dumbbell spinning

in the gravity gradient.

6. Application of Floquet Theory

Strictly speaking, Floquet theory applies only to a periodic co-

efficient matrix, [A(t)]. However, [A(t)] can be considered to be
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periodic, even if it is not, to within a given accuracy if its elements
are all periodic and if one chooses a period for [A(t)] which is suffi-
ciently long so that periodicity is approximated. The practical limit
on the usefulness of this fact is usually computer accuracy. The more
péints the computer must take to integrate over the given period, the
lower the accuracy of the end result, Hence, if an extremely long time
interval must be taken to adequately approximate periodicity of [A(t)],
the accuracy of the integration will be in question due to round-off
errors,

The Floquet stability theory described in the previous section was
applied to equations (83) and (84) for circular orbits where the one time
variant coefficient, G/RB, was constant. The equations are forced, so
one must watch for repeated roots of the homogeneous equations set equal
to 1, 1In all the cases examined, two multipliers having this value were
found in addition to the one from the artificial variable, Z. Because
the nullity was always two and the nultiplicity was three, a linear
growth with time was indicated.

However, recall that a linear growth in time was also found for the
system in free space when angular momentum of the reference motion was
not preserved by the initial conditions. This was identified as a
"trivial instability" and merely indicated that the position angle was
deviating from the reference angle, linearly with time, but that the spin
rate was not growing. The remaining multipliers had a magnitude of 1.0
but were not repeated; hence, they represented neutral stability or
periodic motion for the cases considered. Since the motion given by the
linearized equations is periodic, the validity of the linearization is

open to question.
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When neutral stability of the linearized equations is found for
a nonlinear system, no conclusions can be stated concerning the stabi-
lity of the nonlinear system. In this case, one must actually integrate
the nonlinear equations numerically and ;bserve the motion. On the other
hand, if exponential stability or instability is indicated for the
linearized equations, the the nonlinear system is also stable or unstable
respectively.

The expanded nonlinear sysfem of equations (61) through (62) were
numerically integrated and this motion compared to the motion calculated
using the linearized system (83) and (84). The agreement was surprisingly
good as can be seen from Figures 7, 8, and 9 for circular orbits. Figure
7 shows the axial stretching or deviation of the subsatellite due to the
gravity gradient for various orbits and spring stiffnesses. The shape of
the curve and its dependence on orbital radius suggested the following

empirical formula for the gravity gradient perturbation in length.

. !
Az=115(93} - .g = )
7 [

This equation has been verified only by comparison with Figure 7, and its
validity for spin rates other than one revolution per hour has not been
demonstrated. The effective spring constants plotted correspond roughiy
to a 20 mils x 6 miles, nylon cable attached to a 100 pound subsatellite.
Figure 8 shows that the spin rate deviation from the nominal rate of
one rev,/hour is considerably less than + 1% for orbits above 14,000
nautical miles. Figure 9 is the transverse deviation of a subsatellite
due to gravity effects. The curve shows that the oscillations are quite

small when compared to the size of the overall system.
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Floquet theory was also applied to certain cases of elliptic orbits,
with and without damping. For the cases where the periodic coefficients
were commensurate, the theory showed that the system was either neutrally
stable as before or asymptotically stable when damping was included. The
only instability found in ail the cases examined, occurred when the
system was spinning in an orbit which was low enough to drastically and
permanently change the spin rate.

An example of this is shown in Figure 10, which depicts the effect
of an extremely low perigee. According to Floquet theory the system is
unstable and a subsequent numerical integration of the nonlinear equations
confirmed this. Note that the spin rate can be either increased or
decreased during perigee passing depending on its orientation prior to
reaching perigee. If the perigee is increased to 10,000 nautical miles
for the same apogee, the system becomes stable., Figure 11 demonstrates
this. The oscillations in spin rate change as 1/R3 as the system pro-
ceeds around the orbit but no net change is experienced. The linear
growth in the angular position shown in Figure 11 is the so called “trivial"
instability" previously discussed,

In summary, the subsatellite wire system, neglecting the transverse
motion of the wire, appears to be neutrally stable in circular and cer-
tain elliptic orbits for spin rates of one and ten rev,/hour. The
linearized analysis has been shown to be useful and, indeed, predicts an
instability for low orbits. The next chapter deals with the dynamics of

the connecting wire using the lumped mass approach.



CHAPTER 1V

DYNAMICS OF A SPINNING RADIAL WIRE

The motion of a mass connected to a much heavier mass in orbit has
been shown to be stable for many cases. The next step is to examine
the motion of the connecting wire when it is not assumed to be massless.
Assumptions such as uncoupling of radial and transverse motion and also
constant tension have been made by previous authofs to enable solutions
to be obtained,

The approach here is to consider a lumped mass system and treat the
ordinary differential equations without assuming the tension to be con-
stant and without neglecting Coriolis effects. To study the line dynamics,
the equations of motion for the three mass model shown in Figure 2 were
derived previously in general form as equations (38) and (39). When three

masses are considered, these equations become

(97) .; =1 2.2 - Efl (1= 3c 32 (p, — 8)] —.El (1, - )
9 17 0% T3 os (9 m, ST
k 2
2 20
T, T, (BTt oo (9 o))
.o 22,9 k 2 ]
. 1¥1 3¢ > 20\ “2
(98) o, =- - sin 2(p, —0) —={1 —==°) == sin (9, — ¢,)
1 11 2R3 1 Ml e, [1 1 2

64
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. . AG!
(99) ‘12=12¢22-——R32 [1-3 cos® (o, = ©)]
k I}
2 20
—=={1—-==¥y_ =1, cos (9, — 9,)]
M2 e, 2 1 1 2
Y R '
~ AL T, T 4y cos (¢2‘¢5)]
2 3
2Y2 3G . 2/ 220\ 1 . -
(100) o, =— - sin 2(p, — ©) + =(1 sin (9, — 0,)
2 15 2R’ 2 ¥, & [ L 172
k [ )
__2 ]_—_19. —isin(q) —
=)
Mé e5 12 2 3
o L ] G!
o= 2__73 2 -
(101) ¢, = Lo, — [1 =3 cos” (p;, —8)]
57 3% T3 3
Ei fiQ ( )
- 1 - (2, = 2, cos (9, — 0;)]
M3 es [ 3 2 2 3
and finally
. 21,0 k R
3v3 3G ] - 20\2 . -
(102) o, =~ - sin 2(p, — 8) + 1 == sin (g Py ) e
=Y 3 Bl S5 27

The terms in equations (97) through (102) may be identified as follows:
on the right-hand side, the first term is the Coriolis force, the second

term is the gravity force and the third, and in some equations the fourth

term, is the elastic or spring force, The above equations are wvalid for
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any orbit, spin rate and deflections. 1In particular, the assumption of
small deflections has not been made.

To determine whether the two masses representing the continuous
cable are sufficient to determine its motion, the frequencies of the
continuous nonrotating cable with constant tension were ;ompared with
those for the linearized, nonrotating lumped model. To do this, the
three mass model must be altered to that of Figure 12. In this model,
both ends are fixed and the masses have only one degree of freedom each,
namely, Y1 and Y2. This analysis will yield a fourth order coefficient

matrix whose roots will give the two natural frequencies of the system.

The kinetic energy is given by

M, . M. .
S lg2 222
T=72 11 *3 Y%
and the potential energy, keeping up to fourth order terms in Yl’ Y2, is
| Y12 (Y2 - Yl)2 2
vV =1/2 k1 LO L—-1/2 1 + 1/2 k2 LO L-1/2 R
v’
+ 1/2 k3 Ly~ L - 1/2 T

where LO and 1 are respectively the unstretched and stretched spring

lengths. The linear equations of motion which result after again drop-

ping higher order terms are

w  Jk,  k\[L k. [L
=1, 2| 02_ -2 0_
(103) Y, Ml+M i R4 M| uy,
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and

k. JL k k L
2 0 2 3 o]
(101,_) Y ="""{"""-X)Y + 1= 4+ (“--I)Y .
2 Mé L 1 M2 Mé L 2

For a cable with constant geometric and elastic properties along its

length (i.e. kK, = k, = k3 and M. = MQ), we define a constant H as

1 1

L
k-0

Thus the coefficient matrix of the equivalent first order system is

F-O 0 1 0
0 0 0 1
(a1 = | | :
—2H H 0 0
L.H ~-2H 0 O_”

The characteristic equation is

),l‘ + hm,g + 3H2 =0

with roots

(106) »=+ivB, + 1V3H

which are the first and second natural frequencies respectively. These

frequencies are to be compared with those of an equivalent continuously

distributed mass cable. The frequencies for a continuous cable are well

known and are given by
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Ix ITx T
a = S'ZT » 2\/% v2cc 2™ .5-%#

where T = tension, p = mass density/unit length and L' = total length of

cable., Since

L
Y O R

we can take the ratio of the two lowest frequencies and, noting that

M=pL'/3 and L = 1L'/3, we get

continuous _ x

Temped 3 O 4L 1/2 4 error.

For the second natural frequency, we get

continuous _ 2x_ or ~ 17% error.

Jlumped \EE?

From the above calculations, it can be seen that the first frequency is
reasonably accurate while the second is somewhat in error as would be
expected for such a crude approximation to a continuous cable,

The next step is to determine the effects of the Coriolis force on
the transverse frequencies of a spinning cable. To do this, the single
mass model having two degrees of freedom as shown in Figure 13 was used.
This simplification was made to keep the coefficient matrix to fourth
order so the roots could be easily extracted., The overall spin rate was
fixed, This case would correspond to a mass which is ﬁuch heavier than

the connecting cable spinning in free space. The kinetic energy is
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‘ 2,° 2
=20+ o+

*

where « is the given overall spin rate and ¢ is the spin rate of the mass

point relative tow. The potential energy is

_k 2 o 2 _ _ 2'1
V=3 [(z zo) +(\/z + 17— 2/L cos @ ’o) |

where £ = inner spring length, [, = unstretched length of both springs

0

and L = overall length of system. The equations of motion after lineari-

zation are, in matrix form

"1 [~ - r Y
1, 0 0 1 01fq
< 1 _ 0 0 0 1 95
(0N . ¢ 02 2 . . . { >
Py M Py
‘ 2k ™
p 0 - = (L - 24.) - ollp
P2, | LM 0 L (2,
The natural frequencies are
2
2 2 2 10k2 k2
= °, 2k[, 0 /2(3.»_ 8k ____Q) (_Q)
(108) A =+ 1 5+ n a5 *u i +uML .

We can check this result at w = 0 to see how well the one mass
approximation agrees with the continuous cable in the same way as before.

We get

continuous _ % _

lomped 73 or ©~ T% error.
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If equation (108) is expanded in terms ofm2 and only first order terms

are rétained, we get

21
2k - O} ) 2 L. _
(100) N _-l_-i.\/M(l L) uw(glo 1)
and
(110) k=i—i\/§l—<—+w2(%'—1) .
)

From equation (109) the effect of spinning at a constant rate and under
constant tension, is to lower the frequency associated with the trans-
verse mode. Equation (110), for w = 0, corresponds to the axial mode and
the effect of spinning is to increase that frequency, This is the same
effect that was found for the axial frequency for the single mass, namely
a stifféning effect due to rotation. For w = 0, the axial and transverse
modes are uncoupled in the linear equations but when the system is spin-
ning, they are coupled by linear terms through the Coriolis effect. Thus
when speaking of the "axial or ''transverse'" frequency of & spinning
system, one usually means the frequency of the motion which is predomi-
nantly in the axial or transverse direction even though the two motions
are coupled. The above conclusions are the same as those reached for the
distributed mass cable in Chapter II.

To examine the effects of large deflections, the system of equations
(97) through (102) was numerically integrated for varying tension and
initial amplitude with R % ® (i,e., free space) and mass three restrained
at a constant radius but frée in the tangential direction. These nume-
rical results for both spinning and nonspinning cases compared favorably

with the frequencies calculated for the various simplified models above.
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A plot of amplitude versus frequency for two specific cases can be seen
in Figure 14,
When the end mass is unrestrained and the lowest transverse frequency
‘is equal to or near to the axial frequency, a parametric type motion can
occur, This motion is not the type of parametric motion usually found
because the two modes affected are directly coupled through their linear
terms. When the axial mode is excited, the Coriolis effects directly
exert a transverse force on each mass point of the cable. The force on
each mass point is different because the Coriolis force is a function ~f
the radial velocity and the spin rate. Hence the magnitude of the Coriolis
acceleration varies along the cable. Since the outer mass is much heavier,
its acceleration and corresponding displacement are smaller than those for
the lighter mass points of the cable, This causes transverse deflections
to result due to the axial motion of the cable., It is this phenomenon
which may cause large deflections in a spinning system.
The gravity forces on each mass point can be seen to be independent
of its radius from thé center of rotations for the linear approximation
and, therefore, can not easily start transverse motions of the cable. To

show this, we define a nondimensional variable as

M (t) = —'—'-qi:t)

and introduce this into equations (83) through (84). Thus the equations

are independent of the steady state length, namely
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e k_"2_ ¢\ _ 36 _ ..
(111) M = [KM Do 9R3) ?R3 cos 2(¢O G{J M1 + 2(p0q2

- 13C 54 - 36 -
[ 3 sin 2(¢O 9)] q, + 3 cos 2(@0 8)

and

. G .. G
(112) q, = —]:ig cos 2(p, = ei]qg ~ 2p.M, i;g sin ?($0 - 8).

This implies that an inelastic string, which was initially straight
and spinning in the gravity gradient, would remain straight according
to the linearized equations because the gravity gradient would cause all
masses to speed up and slow down at the same rate. However, elastic
stretching due to the gravity gradient and the resulting Coriolis acce-
leration cause oscillations and, as is the case in most elastic systems,
the frequencies of the axial and transverse motions must not be in reso~
nance or large deflections will result. Figure 15 shows a case where the
transverse oscillations developed with time while Figure 16 shows the

beating phenomenon when the transverse oscillations were started initially,

1. Damping Effects

Damping is usually regarded as a ''cure all" for most dynamics pro-
blems. The damping terms have already been derived—equations (41) and
(42). Let us now linearize these terms about a straight line configu-
ration to determine the effect of damping for small oscillations. They

become
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where qj's are the deviations in the lengths lio. Note that the angular
deviations pj, do not enter into the linear damping terms.

This implies there is no direct damping in these coordinates for
small deflections. This can be shown by comparing Figure 17 with Figure
18, The first case has no damping and the oscillations continue with a
slight beat amplitude, 1In the second case, the axial oscillation is
effectively damped in several oscillations and the transverse oscillations
are reduced in amplitude initially, but continue to oscillate long after
the axial motion has damped out. This indicates that damping cannot be
relied upon to significantly reduce transverse line motion for small
deflections (small in a mathematical sense and not necessarily small in
a physical sense) as previous papers such as the one by Targoff have
suggested,

It is not anticipated that the small amount of flexural damping

which would be present in a physical system, will effectively damp out

the lower modes due to the small radii of curvature of the long thin



™

connecting cable. Deflections of a hundred feet for a 16,000 foot cable
produce negligible bending and the cable's flexural damping coefficient

will also be quite small, Builders of these systems will have to accept
a certain degree of motion unless special dampers which will effectively

damp the transverse motion are designed.

2. Motion of the Radial Wire out of the Orbital Plane

All the analysis to this point has allowed only motions in the plane
of the orbit. This is certainly a large class of problems. However, it
remains to be shown that this motion can be examined independently of
the other possibilities. It can be argued that a single mass on the end
of a massless spring spinning in the orbital plane will experience no
forces perpendicular to the orbital plane. The Coriolis, elastic, cen-
trifugal and gravity forces all act in the plane.

The same is true for the connecting cable; however, small pertur-
bations may occur to disturb it out of the orbital plane even though
the heavier subsatellite remains essentially in the plane. This chapter
examines this problem for out of plane motion of the cable mass points,
but plane motion of the subsatellite.

Figure 19 shows the coordinate system used to define the position
of each mass. The important quantities needed to derive the new equa-

tions are, (1) the length of each spring

_ 2 2 _ -
e \!li +1 Eli __lti(cos Wi'- 1coswicos(cpi ®; - 1)

+sin ¥, _ sin wi)
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and (2) the distance from the Earth's center to the 1 mags

(}'i] = \/RE + 112 + 2Ry, cos ¥, cos (o; = e) .

The Lagrange equations of motion are

.o » . k
- 2 o242 o _.__19] -
!j lj[cos \{rjq)j + ;lrj ] v [1 . [IJ. IJ. - 1(cos \[rj 1%

X cos ’\[Ij cos ((pJ. oy - 1) + sin ‘Ifj sin ‘lfj - 1)]

: L. o ‘
R (3 + Vg
1 : “j IJ. + 1((:os \(rj cosqrj + 1 o8 (r:pj +1

, i+
; . Ge, 2 2
....q)j) + sin \|rj 1 s:.n‘\lrj)] - 3 (1~ 3 cos ¥y cos ((pj ~0)]
. . in 2y, . '
2, _ ,20 B i .02 :
e _PaghgcosT ¥y - 4Ny Ty Ky [1 .._’_19] N
] lj2 cos® Wj Mj €5

* £, cos ¥,
k HEEINN cos ¥ sin ( -0.)
podix |, Y o[Zi+1 i+1 P41 "9
" 541 tyeoe ¥



76

and
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These equations were also numerically integrated for several cases. The
motion was found for: (1) not spinning in free space, (2) spinning in

free space, and (3) spinning in orbit. The results may be summarized as

follows:

(1) The out of plane frequency is unaffected by the rotation, This was

expected since the out of plane motion is not coupled through the Coriolis

forces,

(2) When the system is spinning, the in plane frequencies are ‘given by

2 2 2 M
Wiy = {(n‘n) ol = 1} page 23

and the out of plane by
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since the tension is equal to the centrifugal force of the tip mass.
Note that they will be essentially equal if M/pt >> 1. When they are
the same, the cable merely vibrates in and out of the plane as shown
in Figure 20,

To emphasize the effect of a rotation where the in plane and out of
plane frequencies were different, the end mass was held at a fixed

distance so that in terms of the tension the two frequencies were given

by
- (nﬂlaT _.2
w = w
IN 2
of
and

The tension, T, was very low, compared to what it would have been with
a large end mass. Figure 21 is a plot of the motion perpendicular to
the imaginary line from the center of rotation to the end mass., The
frequencies were different and this produced the interesting pattern
shown., Initially, the rotation of the cable about the imaginary line
through its end points is counter clockwise and moving back and forth
from the second to fourth quadrants. However, after the motion has
rotated to the first and third quadrants, it suddenly reverses direction

and begins a clockwise rotation.
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(3) The out of plane motion does not 'feed" on the in-plane motion. In
otherlwords, the amplitudes of the two motions are essentially constant
with time. Thus, the in plane motion may be treated independently

since additional freedom out of the orbital plane will not produce an

instability in the planar motion.
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CHAPTER V

FINITE BODIES

The analysis to this point has considered all bodies to be point
masses, It is certainly possible that some physical systems might have
instabilities associated with the finite bodies of the system. The con~
necting cables will not always be attached to the center of mass of each
box, and this can cause rotational instabilities of the bodies when the
cable vibrational frequencies are in resonance with the rotational
frequencies of the various bodies.

The following analysis demonstrates how the previous approach may
also be used to analyze a system with a finite body. The‘system to be
considered consists of a cylinder of radius, a, and mass moment of iner-
tia, I, with two massless radial cables connecting it to two point mass.
subsatellites of mass, m, (see Figure 22), Obviously, the model could
be made more general by assuming more mass points and including gravity

gradient terms. The length of each spring, r, is given by

r =\/;2 + 1% - 2af cos (r = o)

and the radius vector to each subsatellite from the center of the Earth

is given by

\/;2 + 12 + 2R2 cos (@ — ©) -
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The Lagrange equations of motion are

. k r
0" -5 (1 -;Q)U- a cos (v — q)]

_G[t+Rcos (p—©) LR cos (p—8)
2 A B

oo

r
+E 1-2
r

2=

sin (v — )

5
“ -
o f

+§_.{Rsin (p —8) _ R sin (p — 6)
21 A B

where

3/2
A = [R2 + 12 + 2RY cos (p — ©)] and B = [R2 + 1% = R{ cos (p - 6)1!3/2

and

. e r
r=- 2k (1 —-—g) at sin (y - @) r,. £ unstretched
I r b O
spring length

plus the two orbital equations of motion.

These equations can be linearized about a straight configuration

where
. . k (x, + a)
= = and § = E____Q._._._. .
TO @0’ YO (Poi s E _ 2
M- %

For free space, the equations are for £, ¢, and y respectively,
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and

.o {(a +r) al 2
2k 0

q
3 I s
The characteristic equation for the above set of equations yields as

usual, two zero roots because of the cyclic coordinate and the following

additional two roots which are the natural frequencies,

2
k * 2 _(a+x) ka |1, 2L
(113) ©; 5 =% [2»4"'3“’0 +l 1 (z,-a) [T
1 <2 (2 +10) w (2 ) 7°
+2| | =2 =30 "+ |1— 2 -z
3 M- % 1 (1,-a) | 1I ®

(a + 1) . (a +1)) ar?
k o/l _a k_'2_ gk
’z*ﬁ(l— ) )(ts-a) (E“q’o -?i'(l_ 1 o)(zsia)ﬂ

If, in the above expression @, = 0, then ls = r. and

k
w1,2 ai\/;. ’ O, O

which is just the spring mass frequency. For QO # 0, but a £ 0 we get
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which is the spinning spring mass frequency derived earlier. For the
general case, the frequencies are given above in equation (113).
Instabilities may occur when the gravity gradient forcing of the
end mass is near a natural frequency for the free space motion given
above. The forcing of the end mass could result in the growth of the
periodic rotational motion of the center body. A complete study of the
stability regions for a'particular range of parameters and orbits can

be carried out using Floquet theory in the manner discussed above.



CHAPTER VI

CONCLUSIONS

The subsatellite-cable system shown in Figure 1 has been analyzed
assuming both a distributed mass and a lumped mass description of the
connecting cable. In both descriptions, a linear elastic material was
assumed.

For the distributed mass case, the complexity of the resulting
nonlinear partial differential equations appears to preclude their use
for motion and stability studies of the system, except for a few
simple cases. In particular, the equations must be linearized and some
of the linear coupling terms neglected in order to obtain solutions.

On the other hand, if the system is approximated by lumped point
masses connected by linear elastic massless springs, several practical
advantages over the distributed mass approach are obtained.

(a) Lagrange's equations of motions may be systematically derived
for any general system by considering the elastic and gravity
potentials. This can also be carried out for the distributed
mass system, but one must deal with the variation of integrals
instead of merely taking partial derivatives, as is the case for
a discrete system.

(b) The resulting exact nonlinear ordinary differential equations

may be easily integrated using a standard Runge-Kutta

83
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numerical integration routine. Thus, computer experiments can
easily be conducted to obtain the motion of the system
under consideration.

(c) The equations may be linearized about some desired reference
motion and Floquet theory applied through numerical integration
to investigate the stability properties. This also can be
accomplished for any general configdration.

The particular results obtained by considering the lumped model

are:

(1) The point mass on the end of a linear elastic massless spring is
neutrally stable for the circular and elliptic orbits considered, except
when the orbit has a perigee low enough to permanently alter the spin
rate. Again it should be pointed out that these results and conclusions
are a consequence of a numerical integration of thevequations of motion
and subject to computer accuracy limitations. However, no growth was
detectable for a time interval of several hours and one can conclude that
if an instability does exist, it must be very slowly growing.

(2) The center of mass motion may be assumed to move in a Keplerian
orbit for computational purposes.

(3) For elliptic orbits, the possibility does exist that the orbit

could become more circular while the relative spin rate greatly increases.
(4) Very few masses are needed to accurately predict the lowest natural
frequencies of the distributed mass cable to be studied. For example,
two masses will give the lowest frequency to about 4 per cent of the
actual frequency.

(5) Discrete viscous dampers may be included in the anélysis creating

generalized forces. Results show that the axial or stretching motion
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is effectively damped out, but that the transverse motion is damped

only when deflections become so large as to be mathematically nonlinear:
this seems to be a few percent of thellength for the lowest mode,

(6) A beating phenomenon occurs between the axial motion -and the trans-
verse motion when their frequencies are close together. Large deflections
can also occur when these frequencies are near each other.

(7) An additional out of orbital plane degree of freedom given to

each cable mass point does not introduce an added instability into

the system and, hence, can be ignored in stability considerations of

systems spinning pfrimarily in the orbital plane.
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Figure 6. Single mass configuration
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Figure 19, Coordinate system for motion out of orbital plane
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